Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

Colin L. Gibson, Judith K. Huggan, Alan R. Kennedy and Colin J. Suckling*

WestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow G1 1XL, Scotland

Correspondence e-mail: a.r.kennedy@strath.ac.uk

Key indicators

Single-crystal X-ray study T = 123 K Mean $\sigma(\text{C-C}) = 0.002 \text{ Å}$ Disorder in main residue R factor = 0.040 wR factor = 0.091 Data-to-parameter ratio = 14.7

For details of how these key indicators were automatically derived from the article, see http://iournals.iucr.org/e.

Ethyl 2-({6-amino-2-(benzylsulfanyl)-5-[2-(ethoxy-carbonyl)prop-2-enyl]pyrimidin-4-yloxy}methyl)-acrylate

A new synthesis of carbon–carbon bonds at the 5-position of 2-thiosubstituted pyrimidines *via* the Claisen rearrangement is reported. A direct route towards the synthesis of carbon bonds at the 5-position of 2-thiobenzyl pyrimidines when reacted with ethyl 2-(bromomethyl)acrylate at 328 K delivered the unexpected title compound, C₂₃H₂₇N₃O₅S. Structural elucidation showed this compound to have undergone *O*-allylation followed by *ortho*-Claisen rearrangement and subsequent secondary *O*-allylation with excess ethyl 2-(bromomethyl)acrylate. Disorder about the centre of symmetry allows it to exist as two conformers with different orientations of the phenyl group.

Received 5 December 2005 Accepted 14 December 2005 Online 21 December 2005

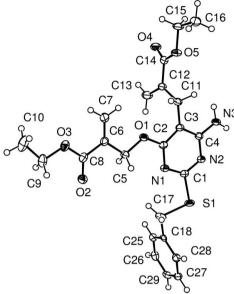
Comment

In order to extend and illustrate our endeavours to develop further the C-5 carbon–carbon bond formation of 2-thio-substituted pyrimidines (Huggan *et al.*, 2005; La Rosa *et al.*, 2002) we sought to utilize the Claisen rearrangement (Claisen & Tietze, 1925) within the context of designing routes towards the synthesis of pyrido[2,3-d]-pyrimidines, (I), and pyrrolo[2,3-d]-pyrimidines, (II), as potential inhibitors of enzymes in the folic acid biosynthesis pathway. When an N atom is present at the 2-position, the formation of C—C bonds at the 5-position is relatively straightforward. However, our solid phase route (Gibson *et al.*, 2003) utilizes an S atom at the 2-position and previous attempts at C—C bond formation in solution phase with sulfur at the 2-position have proved unsuccessful.

where R = aryl, allyl or H

Structurally related folic acid antagonists (Taylor *et al.*, 1983) have been shown to possess a range of biological properties, such as antitumour (Grivsky *et al.*, 1980), antibacterial (Matsumoto & Minami, 1975) and antifungal (Heckler *et al.*, 1991) activity, and hence their efficient synthesis, along with the synthesis of other novel compounds, would be advantageous. The commercially available 6-amino-2-mercaptopyrimidin-4(3*H*)-one was reacted with benzyl mercaptan to yield 6-amino-2-(benzylsulfanyl)-4(3*H*)-pyrimidinone, (III) (90%). Compound (III) was then reacted with ethyl 2-(bromomethyl)acrylate to give products, from which

© 2006 International Union of Crystallography Printed in Great Britain – all rights reserved the title compound, (IV), was surprisingly isolated and identified.


The molecular structure of (IV) is shown in Fig. 1, and selected bond distances and angles are given in Table 1. As can be seen in Fig. 1, structural elucidation showed this compound to have been formed through O-allylation followed by ortho-Claisen rearrangement and subsequent secondary O-allylation with excess ethyl 2-(bromomethyl)acrylate.

Disorder about a centre of symmetry allows (IV) to exist as two conformers with different orientations of the phenyl group. An alternative solution in the non-centrosymmetric space group P1 was rejected as the disorder was still present. The two vinyl groups adopt different geometries. The torsion angles C13-C12-C14-O4 and C7 - C6 - C8 - O2 $[-13.1 (2) \text{ and } 176.8 (2)^{\circ}, \text{ respectively}] \text{ indicate the } syn \text{ and }$ anti relationship of the vinyl and ketone groups and, whilst the presence of O1 allows the C7-centred group to bo coplanar with the heterocyclic ring, the absence of an equivalent atom forces the C13-centred substituent out of this plane. A search of the Cambridge Structural Database (Version 5 with updates to October 2005; Allen, 2002) found 140 similar non-cyclic vinyl fragments and indicated that the geometric parameters of (IV) (Table 1) are all within normal ranges. A similar search showed that the geometry of the hetrocyclic fragment is also in agreement with the known literature.

In the crystal structure of (IV) both the amine H atoms form hydrogen bonds with atoms O4 and N2 of symmetryrelated molecules acting as acceptors (Table 2). This results in the formation of hydrogen-bonded chains of molecules.

Experimental

Compound (III) (0.69 g, 2.95 mmol) was dissolved in dimethylformamide (12 ml, anhydrous) at room temperature under nitrogen. Ethyl 2-(bromomethyl)acrylate (610 µl, 4.40 mmol, 1.5 equivalents) and K₂CO₃ (0.50 g, 3.62 mmol, 1.2 equivalents) were added and the reaction was stirred in an oil bath at 328 K for 24 h. Once the reaction was complete (by thin-layer chromatography) the mixture was cooled to room temperature and the solvent was evaporated under reduced pressure. The residue was dissolved in dichloromethane, extracted with brine, and then collected, dried (MgSO₄) and concentrated under reduced pressure to give a yellow oil. The title compound (IV) was separated by column chromatography using ethyl acetate/hexane (1:1) as eluant, and was isolated as a white solid (0.114 g, 0.25 mmol, 8%). Crystals of (IV) were grown by slow recrystallization from methanol at room temperature (m.p. 383-385 K). IR (KBr): 3407, 3323, 3191, 1707, 1652, 1572, 1555, 1493, 1474, 1444, 1427, 1401, 1376, 1353, 1316, 1280, 1264, 1227, 1158, 1123, 1050, 1027, 855, 776, 708 cm⁻¹; LC-MS: (M+1) = 458.3; ¹H NMR (DMSO- d_6): δ 7.41–7.39

Molecular structure of (IV), with displacement ellipsoids drawn at the 50% probability level. Only one position of the disordered benzyl unit is shown for clarity.

 $[2H, m, 2 \times C(2)H], 7.31-7.19 [3H, m, 2 \times C(3)H, 1 \times C(1)H], 6.19$ (2H, br s, NH2), 6.19 [1H, s, C(18A)H], 5.99 [1H, s, C(12B)H], 5.75 [1H, s, C(12A)H], 5.14 [1H, s, C(18B)H], 4.98 [2H, s, C(16)H2], 4.29 [2H, s, C(5)H2], 4.20–4.09 [4H, d of q, $1 \times 2H$, q, C(20)H, $1 \times 2H$, q, C(14)H], 3.33 [2H, s, C(10)H2], 1.26–1.15 [6H, d of t, 1 × 3H, t, C(21)H, 1 × 3H, t, C(15)H]; 13 C NMR (DMSO- d_6): δ 166.39 (C-19), 166.18 (C-13), 165.44 (C-7), 164.75 (C-6), 163.39 (C-9), 138.66 (C-4), 137.02 (C-17), 136.31 (C-11), 128.77 (C-2), 128.28 (C-3), 126.82 (C-1), 126.08 (C-12), 123.07 (C-18), 90.74 (C-8), 63.49 (C-16), 60.49 (C-20), 60.34 (C-14), 33.83 (C-5), 24.39 (C-10), 14.04 (C-15), 13.91 (C-21).

Crystal data

•	
$C_{23}H_{27}N_3O_5S$	Z = 2
$M_r = 457.54$	$D_x = 1.344 \text{ Mg m}^{-3}$
Triclinic, $P\overline{1}$	Mo $K\alpha$ radiation
a = 7.3668 (2) Å	Cell parameters from 5143
b = 11.5842 (3) Å	reflections
c = 14.5700 (4) Å	$\theta = 1.0 – 27.5^{\circ}$
$\alpha = 111.692 (2)^{\circ}$	$\mu = 0.18 \text{ mm}^{-1}$
$\beta = 99.520 (2)^{\circ}$	T = 123 (2) K
$\gamma = 93.076 \ (2)^{\circ}$	Prism, colourless
$V = 1130.44 (5) \text{ Å}^3$	$0.45 \times 0.15 \times 0.10 \text{ mm}$

Data collection

Nonius KappaCCD diffractometer φ and ω scans Absorption correction: none 25883 measured reflections 5178 independent reflections 3777 reflections with $I > 2\sigma(I)$

Refinement

refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.040$ $wR(F^2) = 0.091$ S = 1.045178 reflections 353 parameters H atoms treated by a mixture of independent and constrained

1

 $R_{\rm int} = 0.044$ $\theta_{\text{max}} = 27.5^{\circ}$ $h = -9 \rightarrow 9$ $k = -15 \rightarrow 13$ $l = -18 \rightarrow 18$

 $w = 1/[\sigma^2(F_0^2) + (0.0315P)^2]$ + 0.4141P] where $P = (F_0^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\rm max}=0.001$ $\Delta \rho_{\text{max}} = 0.25 \text{ e Å}^{-3}$ $\Delta \rho_{\min} = -0.27 \text{ e Å}^{-3}$

organic papers

Table 1 Selected geometric parameters (Å, °).

0 1	, ,	,	
O2-C8	1.2094 (18)	C2-C3	1.386 (2)
O4-C14	1.2153 (19)	C3-C4	1.407 (2)
N1-C1	1.3341 (19)	C6-C7	1.313(2)
N1-C2	1.3424 (18)	C6-C8	1.484(2)
N2-C1	1.3317 (19)	C12-C13	1.318 (2)
N2-C4	1.3611 (18)	C12-C14	1.496 (2)
N3-C4	1.347 (2)		, ,
C1-N1-C2	113.72 (13)	N1-C2-C3	125.47 (14)
C1-N2-C4	116.39 (13)	C2-C3-C4	114.93 (13)
N2-C1-N1	128.05 (13)	N2-C4-C3	121.35 (14)
C5-O1-C2-N1	-5.5(2)	C13-C12-C14-O4	-13.1(2)
C7-C6-C8-O2	176.82 (19)	C1-S1-C17-C18	160.97 (14)
C4-C3-C11-C12	96.68 (18)	C1-S1-C17-C19	-85.22 (17)

Table 2 Hydrogen-bond geometry (Å, $^{\circ}$).

$D-H\cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D-\mathrm{H}\cdots A$
$N3-H1N\cdots O4^{i}$ $N3-H2N\cdots N2^{ii}$	0.872 (18)	2.133 (19)	2.9832 (18)	164.8 (16)
	0.883 (19)	2.20 (2)	3.0868 (19)	176.8 (17)

Symmetry codes: (i) -x, -y - 1, -z; (ii) -x, -y, -z.

After several trial calculations, the disordered CH_2Ph group was modelled over two sites each with occupancy 0.5. The methylene H atoms of this group were found in a difference synthesis and then constrained to ride on the parent C atom. The amine H atoms were refined freely, but all other H atoms were positioned geometrically at distances of 0.95 (CH and vinyl CH_2), 0.98 (CH_3) or 0.99 Å (CH_2) from the parent C atoms; a riding model was used [$U_{iso}(H)$]

 $1.5U_{\rm eq}({\rm C})$ for CH₃ and $U_{\rm iso}({\rm H})=1.2U_{\rm eq}({\rm C})$ for all others] during refinement.

Data collection: *COLLECT* (Hooft, 1998) and *DENZO* (Otwinowski & Minor, 1997); cell refinement: *DENZO*; data reduction: *DENZO*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEPII* (Johnson, 1976); software used to prepare material for publication: *SHELXL97*.

The authors are grateful to the University of Strathclyde for the award of a Postgraduate Scholarship (JKH).

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.

Claisen, L. & Tietze, E. (1925). Berichte, 58, 275.

Gibson, C. L., La Rosa, S. & Suckling, C. J. (2003). Org. Biomol. Chem. pp. 1909–1918.

Grivsky, E. M., Lee, S., Sigel, C. W., Duch, D. S. & Nichol, C. A. (1980). *J. Med. Chem.* 23, 327–329.

Heckler, R. E. & Jourdan, G. P. (1991). European Patent 414 386.

Hooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.

Huggan, J. K., Gibson, C. L., Kiefer, L. & Suckling, C. J. (2005). Chem Biol. Pteridines Folates, 16, 53–57.

Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.

La Rosa, S., Boyle, P. H., Gibson, C. L., Guiney, D. & Suckling, C. J. (2002). Chem. Biol. Pteridines Folates, 11, 25–29.

Matsumoto, J. & Minami, S. (1975). J. Med. Chem. 18, 74-79.

Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Taylor, E. C., Palmer, D. C., George, T. J., Fletcher, S. R., Tseng, C. P., Harrington, P. J. & Beardsley, G. P. (1983). J. Org. Chem. 48, 4852–4860.